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Abstract

The process of dissolution mass transport along a vertical soluble substrate submerged in a large pool of otherwise
quiescent molten metal is studied theoretically. Various freestream concentrations varying from zero to a near-saturation
value are considered. A mathematical model is developed from the conservation laws and thermodynamic principles,
taking full account of the density variation in the dissolution boundary layer due to concentration differences, the
influence of the solubility of the substrate on species transfer, and the motion of the solid/liquid interface at the
dissolution front. The governing equations are solved by a combined analytical-numerical technique to determine the
characteristics of the dissolution boundary layer. Based upon the numerical results, a correlation for the average
Sherwood number is obtained. It is found that the Sherwood number depends strongly on the saturated concentration
of the substrate at the moving dissolution front and the degree of saturation in the ambient pool. © 1998 Elsevier
Science Ltd. All rights reserved.

Nomenclature Gr, local Grashof number
A degree of saturation in the ambient fluid Gry  overall Grashof number
A,, B, constants defined for the saturated concentration h,, local dissolution mass transfer coefficient
correlation, C; h, average dissolution mass transfer coefficient
A,, B, constants defined for the diffusion coefficient D Sc¢ Schmidt number
by, by, b, coefficients defined by eqn (32) Sh average Sherwood number
C local mass fraction of the substrate in the solution Sh, average Sherwood number at the limits of a » 0
layer and C,— 0
¢ modified local mass fraction of the substrate in the T; solid/liquid interface temperature
solution layer Ty melting point of aluminum
C, saturated concentration at the solid/liquid interface u velocity component in x-direction
¢, modified saturated concentration at the solid/liquid v velocity component in y-direction
interface v, dissolution velocity defined by eqn (5¢)
C,, ambient pool concentration V, modified dissolution velocity defined by eqn (15d)
D mass diffusivity of the binary system x,y coordinate axes
f unknown function of 5 Y unknown function of @ and C..
g acceleration due to gravity
Greek symbols
0 dimensionless momentum boundary layer thickness

*Visiting Scholar, Department of Mechanical Engineering, 0. dimensionless concentration boundary layer thick-
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p local density of the fluid

pm molten metallic solvent density

p, fluid density at the dissolution front
pw soluble substrate wall density

p., ambient fluid density

1 dynamic viscosity of the fluid

v kinematic viscosity of the fluid

Y functional form defined by eqn (28).

Subscripts

m molten metallic solvent

s saturation state

w the soluble substrate wall
oo ambient fluid.

Superscript
n power index defined by eqn (29).

1. Introduction

The problem of dissolution of a vertical solid substrate
in a molten metallic pool is of considerable practical
importance in conjunction with the formation of alloys,
casting of metals, corrosion of high-temperature
containers, and safety analysis of advanced nuclear re-
actors [1]. In most cases, the density of the substrate is
different from the density of the molten pool. As a binary
solution is formed near the dissolution front, significant
concentration-induced density gradients may develop in
a region near the solid substrate. Under the influence
of gravity, the concentration-induced density gradients
create a strong buoyancy force which causes the dissolved
material to move in the vertical direction, thus resulting
in the development of a dissolution boundary layer. The
boundary layer motion, in turn, enhances the local dis-
solution rate.

A dissolution boundary layer on a vertical substrate
exhibits many unique features [2]. First, the boundary
layer flow is concentration-driven rather than tem-
perature-driven. Second, the fluid density is not a con-
stant but varies locally with the concentration of the
substrate. Although the fluid can be treated incom-
pressible, the density variation in the dissolution bound-
ary layer needs to be considered. Third, the solid/liquid
interface is not fixed in space but is moving toward the
interior of the substrate as dissolution proceeds. Finally,
the maximum concentration of the substrate is limited by
the saturation value at the system temperature. Thus the
species transfer is strongly influenced by the solubility of
the wall material. These unique features bring about a
strong coupling of the hydrodynamic and transport
process.

Very few studies of dissolution mass transport in
liquid-metal systems have been performed in the past.

Most works conducted by previous investigators in this
area have been largely experimental, dealing either with
the extent of dissolution subjected to given flow con-
ditions [3-6] or with the composition of the alloy resulting
from the dissolution process [7, 8]. Most recently, the
fundamental aspects of the dissolution process and the
dependence of the mass transport on the controlling par-
ameters have been studied for a molten aluminum-steel
system by Cheung et al. [1]. They performed a theoretical
study of the behavior of a dissolution boundary layer
on a vertical steel plate submerged in a pool of molten
aluminum, accounting for various freestream velocities.
However, their work was restricted to a single aluminum
alloy system, i.e. Al-Fe system, with special emphasis on
the effect of freestream velocity.

In this study, the characteristics of a dissolution bound-
ary layer on a vertical metallic substrate submerged in a
large pool of molten metal is investigated analytically.
The problem is formulated using generalized expressions
for the solubility and the mass diffusivity of the substrate
such that the resulting governing system can be applied
to any binary metallic systems. In addition, the effect of
ambient pool concentrations is considered. A combined
analytical-numerical technique is employed to solve the
equations governing the dissolution mass transfer
coefficient as a function of the controlling parameters of
the system.

2. Mathematical model

A schematic of the physical system under consideration
is shown in Fig. 1. The vertical soluble substrate having
a density higher than the ambient fluid, is submerged in
a large pool of otherwise quiescent molten metal. The
dissolved material (i.e. the molten binary alloy) flows
downward along the plate due to the effect of buoyancy
as a result of concentration-induced density gradients
within the solution layer. The system is considered iso-
thermal (i.e. the substrate and the fluid are at the same
temperature) during the dissolution process. To facilitate
mathematical formulation of the problem, the dissolution
process is treated to be steady and the dissolution front
(i.e. solid/liquid interface) to remain vertical. These sim-
plifications are deemed appropriate since the dissolution
process is usually very slow owing to very small mass
diffusivities for most binary metallic systems [10, 11]. The
extent of wall erosion is small compared to the length of
the plate. A two-dimensional Cartesian coordinate sys-
tem moving with the dissolution front is employed such
that the interface is always located at y = 0 (see Fig. 1).
In this coordinate system, the transverse component of
the velocity at the solid surface is no longer zero but has
a value equal to the local dissolution velocity, v,. One
major objective of the present study is to determine the
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Fig. 1. A schematic of the dissolution boundary layer con-
figuration in an isothermal binary metallic system.

axial variation of v, as a function of the system
parameters.

For an isothermal binary metallic system, the local and
the ambient densities of the fluid can be expressed by

p = pull —(1—pu/p)CT™" (1a)

P = pm[l_(l_pm/pw)coo]7] (lb)

where p,, is the density of the molten metallic solvent, p,,
the density of the wall (i.e. the soluble substrate), p., the
ambient fluid density corresponding to the ambient pool
concentration C,, and C the local mass fraction of the
substrate in the solution layer. Without loss of generality,
Py, 18 taken to be larger than p,,. In this study, the metallic
solvent is taken to be aluminum. Assuming a steady,
two-dimensional, laminar boundary flow, the continuity
equation can be written as

0 0
F (pu)+ o (pv) =0 (2

where (u, v) are the velocity components in the streamwise
and transverse directions, (x, ), respectively. For a con-
centration-driven flow, the streamwise momentum equa-
tion can be written as [2]

ou u 0%u
puaﬂv@—u?yﬁ(p—pxw 3)

where p is the viscosity of the fluid, g the acceleration due
to gravity, and p the local density of the solution given
by eqn (1). From the conservation of species, the mass
fraction is governed by the following concentration eqn

(2]
Us v =D 4)
X

where D is the mass diffusivity of the binary system. Note
from eqn (1) that the local density is a strong function of
the local concentration. Hence the local density variation
has to be accounted for in the continuity equation, i.e.
eqn (2).

The coordinate system is chosen to move with the
dissolution front such that the solid surface is always
located at y = 0. Relative to this coordinate system, the
initial and boundary conditions are

x=0 or y->w:u=0,C=C, (52)

y=0:u=0,C=C, (5b)
D oC|

V= — 177(;55},:0 =0y (SC)

where C; is the saturated concentration at the solid/liquid
interface. The term (1 —C,)~" in the denominator of eqn
(5¢) represents the induced flow correction for the trans-
verse component of the liquid velocity at the interface
(see Burmeister [9]). Note that with respect to the moving
coordinate system, the transverse velocity at the solid
surface is not zero but has a value equal to the dissolution
velocity, v,.

The value of C;in eqn (5b) is a function of the interface
temperature, 7T;, which is taken to be the same as the
system temperature. The system temperature is treated
as a parameter in this study. Using the experimental data
for the solubility of metals in molten aluminum at high
temperatures [10, 11] and following the thermodynamic
form proposed by Liu et al. [12], the saturated con-
centration correlation can be obtained by data fitting
using the least squares technique as

InC, = 4,/Ti+ B, (6)

where C; is in wt%, T; is in degrees Kelvin, and 4,, B,
are constants. Equation (6) is similar to the Arrhenius
equation discussed by Yeremenko et al. [13]. The con-
stants 4, and B, for various aluminum alloys are given
in Table 1. For a given value of T}, the above expression
will be used to determine the saturated concentration at
the interface.

The diffusion coefficient, D, plays an important role
in the natural convection mass transfer process under
consideration. Thus, it is necessary to determine D as a
function of the system temperature, 7;. From the exper-
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Table 1

Solubility constants and diffusion coefficients for metals in molten aluminum over

the temperature range of 10001200 K

Solubility constants

Diffusion coefficients

Metals A, B, A, B,

Iron (Fe) —7.74x10° 8.89 —3.12x10° —16.32
Nickel (Ni) —6.87 x 10° 9.35 —5.09x10° —14.42
Molybdenum (Mo) —1.32x10* 12.00 —4.73x 10° —15.16

imental data of Eremenko [11], the following correlation
equation is obtained :

InD = A4,/T;+B, @)

where D isin m*sec™', T;is in degrees Kelvin, and A4,, B,
are constants. In eqn (7), 4, is generally treated as the
activation energy of the diffusion process and B, a fre-
quency factor [14]. The constants 4, and B, for various
aluminum alloys are also given in Table 1.

The density, p,,, of molten aluminum can be deter-
mined as a linear function of temperature using the
Gamma-Attenuation Technique [15]:

P = 2375—0.233(T,— Tyy) ®)

where p,, is in kg m ™, 7; is in degrees Kelvin, and T, is
the melting point of aluminum, i.e. 933.5 K. The
maximum temperature of 7; in eqn (8) is 1613 K. The
dynamic viscosity of molten aluminum from the results
for zone-refined aluminum can be represented by the
equation [10]:

'u — 0.1|:10((720,‘T|)—2.68):| (9)

where u is in Pa-s, 7} is in degrees Kelvin. For most
aluminum alloys [10, 11], the viscosity does not vary
significantly with the mass fraction. As a first approxi-
mation, u is treated as a function of the system tem-
perature only.

To complete the mathematical formulation of the
problem, various ambient pool concentrations are con-
sidered with C_, being bounded between zero and the
saturated value at the interface, and it can be simply
related to C; by
C, =aC, O<a<l). (10)
Physically, the fraction a can be viewed as the degree of
saturation in the ambient fluid.

3. Analysis

The governing system, eqns (2)—(5), can be converted
into a system of ordinary differential equations by invok-
ing the following similarity transformation:

n=yGrilt)/2x (11)

u= &er”zfd—f (12)
X dn

v s g’_ V,

v _\/ExG’X C|:;7d'7 3f+ Ese (13)

C=1—=(—pu/p)C (14)

where 7 is an independent similarity variable, Gr, a local
Grashof number, v the kinematic viscosity of the fluid,
f () an unknown function of 5 to be determined in the
course of analysis, C, a modified saturated concentration,
Sc the Schmidt number of the fluid, and ¥V, a dissolution
constant. The expressions for Gr,, C., Sc¢, and V, are
given respectively by

Gr, = g(1 _Cs)jc3 (15a)
[1—a(l—C)p*
Co=1-(1—pu/p.)C, (15b)
Sc=v/D (15¢)
~ dé
Ve =[C.—pulp] ' —| . 15d
[Cs—pm/psl an |,_o (15d)

In eqns (11), (13) and (15d), the axial variation of the
dissolution velocity given by eqn (5c) has been properly
accounted for. The quantity ¥ in equation (15d) is a true
constant.

With eqns (2) and (12)—(14), the continuity equation is
satisfied automatically. Equations (3) and (4) become
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df VO df ~o df >
dn( dﬂ) <3f7 5556>Cd< dﬂ) . <dn>

—C
+——=—a=0 (16)

1-C,
(12+<3Sf ) ~dC =0. (17
dn? dn
The boundary conditions are
n=0; f(0)=0, f(0)=0,C=C, (18a)
n—o0; f(0)=0,Cw)=1-al-C) (18b)

where f” denotes the total derivatives of f with respect to
5. For given values of p,/p., Sc, and C,, eqns (16) and
(17) can be integrated simultaneously using the fourth
order Runge-Kutta method with the initial conditions
given by eqn (18) to determine the distributions of £ (1)
and C(») in the dissolution boundary layer. Once C(i)
and is known, the dissolution constant can be calculated
from eqn (15d). Note, however, that the unknown quan-
tity 7, also appears in eqns (16) and (17). Thus, an iter-
ative procedure must be employed in the numerical inte-
gration of these equations. This is done by assuming an
initial trial value for V,, and the numerical iteration is
carried out using the Secant shooting method. The cor-
rect value of ¥ is chosen such that eqn (15d) is satisfied.
In the present numerical work, the Secant shoot method
is found to be very effective in obtaining the correct value
of 7, which is independent of the initial trial value.
According to Niinomi et al. [6] and Burmeister [9], the
local dissolution mass transfer coefficient is defined by

PsVo

By = —
m psCs_pooCoc

(19)

where p, is the fluid density at the dissolution front.
Physically, pyw, is the mass flux of the substrate due to
dissolution and the quantity in the denominator rep-
resents the difference in the substrate concentration by
volume across the dissolution boundary layer. In the
present case, the ambient fluid concentration is given by
eqn (10). Hence, eqn (19) can be written as

—1

poo UO
hy=11— —
" < psa> (68

<1 P >7l D oC
=—(1—-"Fa| 7
Ps Cs(l_cs) ay y=0

where eqn (5¢) has been employed in obtaining the above
expression. The value of p, is given by

(20)

Ps = pm[l_(l_pm/ps)cs]il' (21)

From eqns (11), (14) and (15d), the local dissolution mass
transfer coefficient is given by

G w) VoD Gr*
=14 S (1= Pm) o2 O (22)
l—a o) 1=C /oy
For a vertical substrate having a total length of L, the
average dissolution mass transfer coefficient is

1 'L
=— . 2
Ny LL h, dx (23)

From eqns (15a) and (22), it can be shown that

i = <1+LCS><1 P ‘“> WD) 2/26ri" (24)

l—a 1-C 3L
where Gr, is the overall Grashof number defined as

Gr :M (25)
a1 =Gy

It follows that the average Sherwood number is given by

—— h,L aC, P\ 24/ 2V Gri/*
h = 1 l—— = 26
<+17 >< pw> ai-cy %

Note from eqns (15)—(18) that V is a function of p,,/pw,
Sc, and C,. Thus, the average Sherwood number can be
correlated in the following form

Sh = yGr/* (27)
where
(14 @GN e\ 2 (o
¢_<1+1_a><1 >3(1_C) ‘”(m o, e, c>
(28)

The functional form of  will be determined by cor-
relating the present numerical results.

4. Results and discussion

Numerical calculations have been performed for three
aluminum alloys over the temperature range of 1000
K < T; < 1200 K for which the value of p,/p, varies
from 0.23 to 0.3, the Schmidt number varies approxi-
mately from 46 to 202, the saturated concentration varies
from 0.0029 to 0.375, and the corresponding value of C,
varies from 0.722 to 0.998. Typical results are given in
Table 2 for T; = 1000 K and Table 3 for 7; = 1200 K.
For a given system temperature, eqns (16) and (17) can
be integrated numerically using the Secant shooting
method to determine the profiles of £(i) and C(y), from
which the value of {y can be calculated using eqns (15d)
and (28).
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Numerical results for various ambient pool concentrations in different binary systems at 7; = 1000 K

Binary systems

Parameters Al-Fe Al-Ni Al-Mo
Schmidt number (Sc) 129 138 202

Density ratio (p./pw) 0.30 0.27 0.23
Saturated concentration (C;) 0.0315 0.119 0.0029
Modified saturated concentration (C,) 0.978 0.912 0.998

a=0

£(0)/C(0) 0.239/0.05 0.255/0.194 0.209/0.0058
N/f max 0.45/0.037 0.40/0.037 0.40/0.03
a=0.5

£(0)/C(0) 0.14/0.021 0.149/0.084 0.123/0.0024
N/f max 0.50/0.0257 0.50/0.0262 0.45/0.0206
a=09

£(0)/C(0) 0.041/0.0028 0.043/0.011 0.036/0.00032
N/f max 0.65/0.0107 0.65/0.0111 0.60/0.0086

The calculated velocity profiles for the Al-Mo, Al-Ni,
and Al-Fe systems in the dissolution boundary layer are
shown in Fig. 2(a)—(c), respectively, for the case in which
the system temperature is fixed at 7; = 1000 K. In these
figures, the mass fraction of the substrate in the free-
stream is treated as a parameter ranging from the baseline
value of a = 0 to the near-saturation value of @ = 0.9.
The peak velocity is a monotonically decreasing function

Table 3

of a. As the degree of saturation in the ambient pool is
increased from a = 0 to a = 0.9, the peak velocity reduces
for all three aluminum alloy systems. This result is evi-
dently due to the fact that the concentration difference
across the boundary layer decreases with an increasing
value of a, thus giving rise to a smaller induced velocity.
For a given ambient pool concentration, the peak velocity
as well as the velocity gradient at the dissolution front

Numerical results for various ambient pool concentrations in different binary systems at 7; = 1200 K

Binary systems

Parameters Al-Fe Al-Ni Al-Mo
Schmidt number (Sc¢) 59.4 45.8 71.1
Density ratio (pm,/pw) 0.29 0.26 0.23
Saturated concentration (Cy) 0.114 0.375 0.0263
Modified saturated concentration (C,) 0.919 0.722 0.980
a=0

1"(0)/C(0) 0.31/0.14 0.44/0.38 0.27/0.04
N/f max 0.45/0.054 0.45/0.071 0.45/0.048
a=0.5

17(0)/C(0) 0.18/0.062 0.25/0.18 0.16/0.017
N/f max 0.55/0.038 0.55/0.051 0.55/0.033
a=09

17(0)/C(0) 0.051/0.0084 0.069/0.026 0.046/0.0022
N/f tax 0.75/0.016 0.80/0.022 0.75/0.014
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0.05
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Fig. 2. (a) Modified axial velocity profiles for an aluminum-molybdenum (Al-Mo) system in the dissolution boundary layer at 1000 K
for various freestream concentrations ; (b) modified axial velocity profiles for an aluminum-nickel (Al-Ni) system in the dissolution
boundary layer at 1000 K for various freestream concentrations; (c) modified axial velocity profiles for an aluminum-iron (Al-Fe)
system in the dissolution boundary layer at 1000 K for various freestream concentrations.

vary from one aluminum alloy system to another, evi-
dently due to the effects of the Schmidt number and the
density ratio of the binary system. This is true as long as
the system temperature, 7; is fixed at a constant value.
The numerical results for various ambient pool con-
centrations are given in Table 2.

Figure 3(a)—(c) shows the distribution of C(x) in the
dissolution boundary layer for the Al-Mo, Al-Ni, and
Al-Fe systems. For all three systems, the values of C(1)
almost approach their asymptotic values at n = 1. Com-
paring the velocity and concentration profiles for each
system, it can be seen that the location at which the
velocity peaks, is within the concentration boundary
layer. Physically, this behavior is quite expected since the
flow is induced by buoyancy due to the concentration
gradients. The local mass fraction of the substrate

decreases from its saturated value at the dissolution front
to the ambient pool concentration at the edge of the
concentration boundary layer. As the degree of satu-
ration in the ambient fluid is increased, the concentration
gradients in the boundary layer decrease, resulting in a
smaller driving force for the flow.

Figures 4 and 5 show the calculated velocity and modi-
fied concentration profiles in the dissolution boundary
layer for the case in which the system is at a higher
temperature of 7; = 1200 K. Due to space limitation,
results are presented only for the Al-Ni system in these
figures. A comparison of Figs 2(b) and 4 indicates that
the induced velocity is larger at a higher temperature.
For the case of a = 0, the peak velocity increases by a
factor of 1.90 as the system temperature is increased
from 1000 K to 1200 K. For the near-saturation case of



3766 S.W. Shiah et al./Int. J. Heat Mass Transfer 41 (1998) 3759-3769

1.002 1.10
i Al-Mo system I Al-Ni system
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Fig. 3. (a) Distribution of the modified mass fraction of the Al-Mo alloy in the dissolution boundary layer at 1000 K for various
freestream concentrations ; (b) distribution of the modified mass fraction of the AI-Ni alloy in the dissolution boundary layer at 1000
K for various freestream concentrations ; (c) distribution of the modified mass fraction of the Al-Fe alloy in the dissolution boundary

layer at 1000 K for various freestream concentrations.

a = 0.9, the peak velocity increases by a factor 1.97 as
the system temperature is increased from 1000 K to 1200
K. The increase in the induced velocity is evidently due
to the presence of larger concentration differences across
the boundary layer, as can be seen from Fig. 5. As the
system temperature is increased from 1000 K to 1200
K, the saturated mass fraction of the substrate at the
dissolution front increases considerably, resulting in a
larger buoyancy effect. On the other hand, the thickness
of the concentration boundary layer increases only mod-
erately from 0.75 to approximately 2.0, as the saturated
concentration increases much faster with temperature
than does the mass diffusivity. Thus the concentration
gradients increase almost by an order of magnitude
within the boundary layer as the system temperature is
changed from 1000 K to 1200 K, giving rise to higher

local velocities. The numerical results are given in Tables
2 and 3. Note that J is several times larger than J, as the
Schmidt number of the fluid is much larger than unity.

For an aluminum alloy system [10, 11], p./p, 1is
approximately equal to some constant in this study. From
eqns (15b) and (28), it can be shown that

= [1 n laf;Jz 3?/“ — y(a, Se, C.). (29)

From eqns (27) and (29) with an anticipation of
Sh oc Sc', it may be postulated that

Y = ySc' = ¥(a, C) (30)

where Y(a, C,) is an unknown function of ¢ and C,. A
plot of Y versus C, is shown in Fig. 6 for the three
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0.08

a=0

Al-Ni system
Ti=1200 K
Ceo=aCs

3,0.04

Fig. 4. Modified axial velocity profiles for an aluminum-nickel
(Al-Ni) system in the dissolution boundary layer at 1200 K for
various freestream concentrations.

1.2
Al-Ni system
e Ti=1200 K
L Cw=aCs
a=0

1.0
O 0.9

0.8

0.7

0. L 1 1 1 . 1 1

60 1 2 3 4

n
Fig. 5. Distribution of the modified mass fraction of the AI-Ni
alloy in the dissolution boundary layer at 1200 K for various
freestream concentrations.

aluminum alloys for various values of a. These numerical
data are obtained by calculating the value of V, and thus
the value of y at various system temperatures, cor-
responding to different sets of Sc¢ and C,. The fitting
equation for function Y can be written as

Y = Y(a,C) = by+b,Ci+b,C? (€2))]

where b,, b;, and b, are coeflicients dependent only on
the value of a, and their corresponding values are given
in Table 4. In view of the similarity among the various
curves in Fig. 6, a further analysis is done by a nor-
malization procedure. The value of Y for different alumi-

1.6
1ok L4 Al-Mo system

’ ° Al-Fe system

A Al-Ni system
> 08| a=0
i - . . - a=0.5
041 T oo a=0.9
oQlyv v vt 0 vt 0
QO' 10 10 10
Cs (wt%)

Fig. 6. Correlation of the numerical data for various metals in
molten aluminum.

Table 4
Correlation equation constants for various ambient pool con-
centrations

Constants
Ambient pool
concentrations b, b, b,
a=0 0.647 0.332 0.190
a=0.5 0.541 0.201 0.208
a=09 0.0358 0.090 0.147

num alloy systems is divided by the coefficient b, at vari-
ous values of @, and then plot against C for all three
aluminum systems as shown in Fig. 7. By correlating the
numerical data, a parabolic curve is obtained over the
range 0.0029 < C, < 0.375 where

Y/by = 1+0.38C,+0.36C2. (32)

Since b, is only dependent on the value of «, a reasonable
linear correlation can be done as in Fig. 8. The equation
is correlated as

by = 0.66—0.32a. (33)

From eqns (27, 31, 33, 34), a correlation for the average
Sherwood number can be obtained. This is

Sh = (0.66—0.32a)(140.38C,40.36C2)Sc"*Gr}/*.
(34)

The above result indicates that the average dissolution
mass transfer coefficient for binary metallic system is
a function of both the saturated concentration of the
substrate at the solid/liquid interface and the degree of
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Fig. 7. Correlation of the normalized data for various metals in
molten aluminum.
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Fig. 8. Correlation of the coefficient b, for different values of a.

saturation in the ambient pool. It should be noted that
at the limits of ¢ — 0 and C, — 0, eqn (34) reduces to

Shy = 0.66Sc'*Gr}/* (35)

which is identical to the classical result reported for natu-
ral convection heat transfer analogy [16].
5. Conclusions

A physical model has been developed to describe the
process of dissolution mass transfer in an isothermal

binary metallic system. Based upon the results of the
present study, the following conclusions can be made.

1. The flow induced by the dissolution process is a strong
function of the ambient pool concentration as well as
the system temperature. This is due to the fact that
the solubility of the wall material given by the phase
diagram of the binary system is uniquely determined
by the system temperature. A higher velocity is
induced as the system temperature is increased.

2. For given ambient pool concentration and system
temperature, the peak velocity induced in the dis-
solution boundary layer as well as the velocity gradient
in the dissolution front vary from one aluminum alloy
system to another, evidently due to the effects of the
Schmidt number and the density ratio of the binary
system.

3. The momentum boundary layer is several times
thicker than the concentration boundary layer. This
is typical for molten metallic systems whose Schmidt
numbers are usually much larger than unity.

4. The average Sherwood number not only depends on
the Grashof number and Schmidt number but is also
a strong function of the saturated concentration of the
substrate at the dissolution front and the degree of
saturation in the ambient pool. Over the range of
0.0029 < C, < 0.375, the average Sherwood number
can be correlated to these four controlling parameters
in the form given by eqn (34).

5. The classical result reported for natural convection
heat transfer analogy [16] can be obtained as a limiting
case of the present study with ¢ - 0 and C;— 0, as
given by eqn (35).
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